

SAR Wind Imagery After the First Year

Frank Monaldo

The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road, Laurel, MD 20723-6099

Tel: 240-228-8648, Fax: 240-228-5548

Email: f.monaldo@jhuapl.edu

Outline of presentation

- Why would we ever believe that a radar could measure winds?
- Scheme for estimating wind speed.
- Sample wind images.
- Preliminary Validation
 - Models
 - Buoys
- Timing
- Conclusions

Scattering

Specular scattering from a smooth surface: Most of the energy is reflected away.

Diffuse Scattering from a rough surface: Energy is reflected in all directions.

Sir William Lawrence Bragg Bragg resonance was discovered in the context of scattering from crystal structures. Encyclopedia Britannica, 1999.

Bragg Scattering

A periodic structure will set up a resonance for waves that match the Bragg condition.

September, 2000

Wind speed model function

$$\boldsymbol{s}_0^{\mathrm{H}} = R(\boldsymbol{q})a(\boldsymbol{q})U^{\boldsymbol{g}}\left[1 + b(\boldsymbol{q})\cos\boldsymbol{f} + c(\boldsymbol{q})\cos2\boldsymbol{f}\right]$$

CMOD4

- ${m S}_0$ represents radar cross section.
- U is the wind speed raised to a power γ .
- f is the angle between the wind speed and the radar look direction. If q is equal to zero then the radar is looking into the wind.
- a, b, c are constants and a function of incidence angle q.
- R(q) is the polarization ratio.

Polarization ratio

$$R(\mathbf{q}) = \frac{(1 + \mathbf{a} \tan^2 \mathbf{q})^2}{(1 + 2 \tan^2 \mathbf{q})^2}$$

- a = 0, Bragg scattering
- a = 1, Kirchhoff scattering.
- Using an empirical a = 0.6.

Reference for polarization ratio: Thompson D. R., T. M. Elfouhaily, and B. Chapron, Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles, *Proc. 1998 International Geoscience and Remote Sensing Symposium*, Seattle, Washington, Proceedings, 1671–1673, July 1998.

Wind speed processing

Coverage

September, 2000

1999 Dec 22 0442 UTC

Von Karman Vortices

http://orbit35i.nesdis.noaa.gov/orad/sar/

September, 2000

1999 Dec 9

0240 UTC

Canadian West Coast

September, 2000

1999 Dec 24 0344 UTC

Cook Inlet

September, 2000

Closeup

1999 Dec 24 0344 UTC

September, 2000

Fairbanks, Juneau, and Anchorage Alaska

2000 Feb 2 0557 UTC

Low Pressure

September, 2000

Hurricane Danielle

1998 Aug 31 1053 UTC

September, 2000

Model Directions vs SAR Directions

2000 Apr 05 0339 UTC

September, 2000

SWHOP KING UNIVERSITY

2000 Aug 29 1200 UTC t=0600

Model Field

SAR & Model

2000 Aug 29 1804 UTC

September, 2000

SAR & Model (Enlarged)

2000 Aug 29 1804 UTC

September, 2000

September 27, 2000 0336

Model v. SAR Wind Speeds

September, 2000

Cross Section vs Incidence

East Coast Buoy Coverage

Comparison with buoys

Ad Hoc Correction

Wind Speed Distributions

September, 2000

Buoy Comparison

Direct Buoy-SAR Comparisons

Direct SAR-Buoy Comparisons

Timing Excluding Times Over 12 Hours

A Good Week

Conclusions

- It is possible to produce high-resolution wind speed estimates 5-6 hours from acquisition.
- We have observed structures unobservable with other instruments.
- Comparisons with model prediction raise calibration issues.
- Comparison with buoys show 2 m/s standard deviation.
- Future integration of wind speed retrieval approaches.